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The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has 
been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amen-
able to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both 
the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have 
access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource 
for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 
10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and 
the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South 
America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any 
anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies 
of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards. 
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Introduction 
Lizards of the genus Anolis have played a significant role in our 
understanding of adaptive radiation (Losos 2009). They represent 
a hyperdiverse vertebrate genus composed of ∼400 species that 
are distributed throughout southeastern North America and 
most of Latin America, as well as the Caribbean (Losos 2009). 
Famously, entire communities composed of similar sets of 
ecomorphs have repeatedly evolved across the Greater Antillean 
islands of the Caribbean, providing a classic example of conver-
gent evolution (Losos 2009). Research on anole ecomorphs has 
led to important discoveries on how processes like competition 
and character displacement can affect community assembly 
and structure (Losos 1992, 1995). This combination of high diver-
sity, rapid evolution, and replication of evolutionary outcomes 
has also made anoles important model organisms for the study 
of speciation and contemporary evolution (Losos et al. 2004,  
2006; Roger et al. 2008; Logan et al. 2014; Lapiedra et al. 2018;  
Calsbeek et al. 2022). The high natural abundances of anoles and 
their tractability for both field observation and laboratory study 
have made them one of the most important vertebrate models 

for ecological (Schoener et al. 2002; Pringle et al. 2019), behavioral 

(Johnson et al. 2010), and ecophysiological research (Huey and 

Webster 1976). Finally, anoles have colorful throat fans called 

dewlaps which they use to communicate with con- and hetero-

specifics, and this group has therefore been a major focus of stud-

ies on signal evolution as well (Fitch and Hillis 1984; Losos 1985;  

Leal and Fleishman 2004; Nicholson et al. 2007; Ng et al. 2017). 
Despite the rich history of research on anoles, high-quality gen-

omes have only been published for a few species (Alföldi et al. 

2011; Tollis et al. 2018; Geneva et al. 2022; Kanamori et al. 2022). 

Of these, the genomes of the green anole (Anolis carolinensis) and 

brown anole (Anolis sagrei) are the most complete (Alföldi et al. 

2011; Geneva et al. 2022). The green anole genome was assembled 

and annotated more than a decade ago and has been the founda-

tion of many investigations, including those on differences in gene 

expression under natural selection (Campbell-Staton et al. 2022) 

and local adaptation to extreme environments (Campbell-Staton 
et al. 2018). Unfortunately, nearly all available genomic resources 
come from West Indian and Caribbean species, with only a few 
relatively low-quality genomes published to date for Central and 
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South American species (including a previous, incomplete gen-
ome for the slender anole; Tollis et al. 2018), even though species 
diversity is highest in this region. 

Here, we assemble and annotate a high-quality genome for the 
slender anole, Anolis apletophallus (Köhler and Sunyer 2008), to 
facilitate further research on this species and anoles in general. 
The slender anole is part of the Norops species group and was pre-
viously thought to represent central and eastern Panamanian po-
pulations of Anolis limifrons (Nicholson et al. 2012), which is a 
common anole with a broad distribution in Central America, until 
the 2 species were distinguished from each other based on sub-
stantial differences in the morphology of the hemipenes (Köhler 
and Sunyer 2008). Like A. limifrons, the slender anole is an arboreal 
lizard of the lowland rainforest understory (see Fig. 1). This lizard 
is small in body size (adults are 40–45 mm in snout–vent length), 
lays multiple single-egg clutches primarily during the rainy sea-
son (April–November), and displays rapid growth to maturity 
with high adult mortality (Andrews and Nichols 1990) that results 
in annual population turnover (Andrews et al. 1982; Andrews 
and Rand 1983). Additionally, slender anoles are extremely abun-
dant in the forests surrounding the research facilities of the 
Smithsonian Tropical Research Institute (Cox et al. 2020). These 
features of slender anole geography and biology, in combination 
with their tractability for laboratory research, have inspired 6 dec-
ades of work on this species. Studies on slender anoles in Panama 
have contributed to a range of subfields within evolutionary ecol-
ogy, including population ecology (Sexton 1967; Andrews 1991;  
Stapley et al. 2015; Andrews and Rand 2022), morphological evolu-
tion (Andrews and Stamps 1994), invasion biology (Nicholson et al. 
2022), life history evolution (Andrews et al. 1989), microbial ecol-
ogy (Kimsey 1992; Williams et al. 2022), species interactions 
(Chalcraft and Andrews 1999), ecophysiology (Logan et al. 2021;  
Neel et al. 2021), and signal evolution (Stapley et al. 2011; Rosso 

et al. 2020). A well-annotated reference genome would greatly 
benefit future research on this species. 

Materials and methods 
Specimen, library construction, and sequencing 
of the slender anole genome 
We collected an adult female slender anole from the wild 
(Soberanía National Park, Panama; Fig. 1a) and stored it at −80°C 
at the Smithsonian facility on Naos Island (collection permit: SE/ 
A-45-2020 issued by MiAmbiente). We used a female because 
they are likely the homogametic sex in slender anoles, and this re-
duced the likelihood of assembly problems caused by unmatched 
sex chromosomes. We extracted high molecular weight (HMW) 
DNA from frozen muscle tissue using a phenol–chloroform meth-
od (Barnett and Larson 2012). We purified the extracted DNA with 
3× concentration of KAPA Pure Beads (Roche Sequencing) and 
quantified the purity using a Qubit fluorometer (Thermo Fisher 
Scientific). We also checked for the integrity of the DNA with a 
field inversion gel (Pippin Pulse, Sage Science). On average, DNA 
fragments were ∼50 kb in length. 

Sequencing was performed by combining 3 technologies: 
Oxford Nanopore (ONT, Oxford, United Kingdom), 10× Genomics 
Linked-Reads (10× Genomics Chromium platform), and Dovetail 
Omni-C (Hi-C). We prepared the ONT libraries using the ligation 
sequencing kit SQK-LSK109 according to the manufacturer’s pro-
tocols. ONT libraries started with 1.5 μg of HMW DNA, and genomic 
DNA was first fragmented to ∼10 kb using Covaris g-TUBEs follow-
ing the manufacturer’s protocols. We end-repaired the fragmen-
ted DNA using a NEBnext Ultra II End Repair kit (New England 
Biolabs) and cleaned it with 1× volume of KAPA Pure Beads 
(Roche sequencing). Next, we performed adapter ligations for 
15 min using NEB blunt/TA ligase (New England Biolabs). The li-
braries were cleaned using 0.4× AmPure beads (Beckmann 
Coulter) and eluted in 15 μL of elution buffer. Subsequently, we 
performed sequencing on a MinION Mk1b (Oxford Nanopore) 
using SpotON flow cells (FLO-MIN106; Oxford Nanopore) in 48-h 
sequencing runs controlled and monitored by the MinKNOW soft-
ware (release 19.06.8, Oxford Nanopore). We generated and saved 
the FAST5 files during sequencing and performed base calling 
using Guppy (v.3.3.0; Oxford Nanopore). We used Porechop 
(v.0.2.3, https://github.com/rrwick/Porechop) to remove residual 
ONT adapters and NanoFilt (v.2.5; https://github.com/wdecoster/ 
nanofilt; De Coster et al. 2018) to filter reads with an average quality 
score > Q5. For visualization, we used NanoPlot (v.1.10; De Coster 
et al. 2018) to graph ONT read qualities. 

HMW DNA extracted from the same individual was used for gen-
erating the ONT libraries, and this DNA was also used for 10× 
Genomics Linked-Reads library preparation. A total of 1.5 μg of 
HMW DNA was loaded onto a Chromium Controller chip with 
10× Chromium reagents and gel beads, following the manufac-
turer’s protocols. We sequenced barcoded DNA fragments on an 
Illumina Hiseq X Ten platform (Illumina HiSeq X Ten, RRID: 
SCR_016385) to yield 2 × 150 bp paired-end sequences. Library prep-
aration and sequencing were performed at Genome Quebec (McGill 
University and Génome Québec InnovationCentre). We checked 
quality of the raw 10× Illumina short reads with FastQC (v.0.11.8;  
Andrews 2010), and adapters were trimmed with the Cutadapt pro-
gram (v.3.4; Martin 2011). We estimated genome size, heterozygos-
ity, repeat, and duplicate content on clean and filtered 
10× Genomics Linked-Reads using GenomeScope (https://github. 
com/schatzlab/genomescope; Vurture et al. 2017). We counted 
and generated a k-mer frequency distribution for 21-mers with 

South AmericaPacific Ocean

Caribbean Sea

(a)

(b)

Fig. 1. a) The distribution and georeferenced records in Panama (orange 
dots; data downloaded from gbif.org in 2022 according to (Köhler and 
Sunyer 2008) for the slender anole (A. apletophallus). b) A male slender 
anole in situ (photo: RMP).   
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Jellyfish (v.2.2.6; https://github.com/gmarcais/Jellyfish), and the re-
sulting histogram was later processed by GenomeScope (Marcais 
and Kingsford 2011). 

Finally, we sent HWM DNA from a different female individual 
(collected from the same site as the previous female) to Dovetail 
Genomics (Scotts Valley, CA), who performed all subsequent li-
brary construction, sequencing, assembly, and scaffolding. The 
Hi-C library was constructed following the methods described 
by Putnam et al. (2016). Briefly, chromatin was fixed in place 
with formaldehyde in the nucleus and then extracted. Fixed chro-
matin was digested with DNase I, and chromatin ends were 
repaired and ligated to a biotinylated bridge adapter followed by 
proximity ligation of adapter-containing ends. After proximity 
ligation, crosslinks were reversed, and the DNA was purified. 
Purified DNA was treated to remove biotin that was not internal 
to ligated fragments. Sequencing libraries were generated using 
NEBNext Ultra enzymes and Illumina-compatible adapters. 
Biotin-containing fragments were isolated using streptavidin 
beads before PCR enrichment of each library. Libraries were se-
quenced on an Illumina HiSeqX platform to 20× coverage. 

Hybrid de novo genome assembly of the slender 
anole genome 
We used a hybrid genome assembly pipeline to combine Oxford 
Nanopore (ONT), 10× Genomics Linked-Reads technologies, and 
Hi-C Dovetail proximity ligation data. First, we assembled a draft 
genome from ONT long reads using Wtdbg2 (v2.2; Ruan and Li 
2020). Wtdbg2 is a fast de novo assembler for noisy long-read se-
quence data produced by ONT technologies (see https://github. 
com/ruanjue/wtdbg2; Ruan and Li 2020). We ran Wtbg2 with the 
“-ont” preset option as suggested by Ruan and Li (2020). ONT reads 
were used to polish the contigs by mapping the reads with 
Minimap2 (Li 2018). This was followed by a round of polishing 
with the 10× Genomics Linked-Reads, which we mapped to the as-
sembly with BWA (Walker et al. 2014). Similar to the polishing with 
ONT reads, we obtained a consensus assembly with the wtpoa-cns 
command from Wtdbg2 (v. 2.2; Ruan and Li 2020). Additionally, we 
performed a medium-range scaffolding with 10× Genomics 
Linked-Reads using Scaff10× software (v.4.2; https://github.com/ 
wtsi-hpag/Scaff10X). A further round of polishing was performed 
with both ONT data with Racon (v.1.4.20; Vaser et al. 2017) and 
10× reads with Pilon (v.1.23; Walker et al. 2014). At this stage, we 
checked and eliminated bacterial, viral, and plasmid contamin-
ation using Kraken2 (v.2.1.2; https://github.com/DerrickWood/ 
kraken2). This process resulted in 15,176 sequences rooted 
(91.08%) and 1,487 sequences unclassified (8.92%). To filter the con-
tigs, we made them a target in the genome. Subsequently, we cre-
ated a list using the human and unclassified contigs and removed 
any contigs classified as bacteria, plasmids, or viruses, which re-
sulted in the deletion of 613 contigs. Using Samtools, we applied 
the created list to extract only the contigs identified as human (ver-
tebrate) or unclassified from the genome assembly. 

To improve the contiguity of the slender anole genome, we 
used HiRise Pipeline, a software platform developed specifically 
for genome scaffolding with Omni-C data (Putnam et al. 2016). 
Dovetail Omni-C library sequences were aligned to our ONT-10× 
draft assembly using BWA (Li and Durbin 2009, 2010; Li 2013). 
The separations of Dovetail Omni-C read pairs mapped within 
draft scaffolds were analysed by HiRise to produce a likelihood 
model for genomic distance between read pairs, and the model 
was used to identify and break putative misjoins, to score pro-
spective joins, and make joins above a threshold. 

We screened our genome assembly for potential contamination 
with taxon-annotated GC-coverage plots using BlobTools (v.2.0;  
Laetsch and Blaxter 2017). To prepare data for BlobTools, we 
mapped both ONT and 10× raw reads against the final genome as-
sembly using minimap2 (Li 2018) with the -ax map-ont and the -ax sr 
options, respectively. The resulting bam files were then sorted and 
merged with Samtools sort and merge commands (Li et al. 2009). A 
reference database for taxonomic assignment of scaffolds was cre-
ated with MegaBLAST (Zhang et al. 2000) using the following para-
meters: -task megablast and -e-value 1e-25. We used the BlobTools 
module map2cov to calculate coverage and generated a database 
with the BlobTools command create. BlobTools results were visua-
lized and plotted with the BlobTools command view. For each of the 
intermediate and the final assemblies, we produced genome con-
tiguity and summary statistics using Assembly_Stats (v.0.14;  
Trizna 2020) and ran Benchmarking Universal Single Copy 
Orthologs (BUSCO v.3.0.2; Simão et al. 2015; Waterhouse et al. 
2018; Manni et al. 2021) to assess the completeness of the slender 
anole genome final assembly. We scanned all the sequences for a 
vertebrate-specific database of 5,310 conserved genes (tetrapo-
da_odb10). We also estimated assembly completeness and consen-
sus quality value (QV) by counting k-mers in short insert, 10× 
Illumina data using meryl (v1.3) with a k-value of 21 and inputting 
the meryl database, along with the final version of the assembly, to 
Merqury (v1.3; Rhie et al. 2020). Finally, we performed a conserved 
synteny analysis with the D-GENIES web-based software 
(Cabanettes and Klopp 2018), using minimap2 for alignment. We 
visualized synteny between our slender anole genome and the pre-
viously assembled slender anole genome (Tollis et al. 2018), as well 
as the green (Alföldi et al. 2011) and brown (Geneva et al. 2022) anole 
genomes. The final assembly statistics for our slender anole gen-
ome are presented in Table 1. All analyses were run using the 
Smithsonian Institution High Performance Computing Cluster. 

Genome annotation 
We annotated our slender anole genome using the Dovetail 
Genomics annotation pipeline from Jarvis et al. (2017). Briefly, this 
pipeline performs 6 steps. First, we applied repeat preparation 
and masking, which constructs a species-specific repeat model 
based on our genome assembly. Repeat families were identified 
de novo and classified using the software package RepeatModeler 
(version 2.0.3). RepeatModeler depends on the programs RECON 
(version 1.08) and RepeatScout (version 1.0.6) for the de novo iden-
tification of repeats within the genome. The custom repeat library 
obtained from RepeatModeler was used to discover, identify, and 
mask the repeats in the assembly file using RepeatMasker 
(Version 4.1.0). Second, we performed Model Preparation, which de-
velops a species-specific hidden Markov model (HMM) that de-
scribes how genes are encoded. Here, we used coding sequences 
from A. carolinensis, Lacerta agilis, and Zootoca vivipara to train the 
initial ab initio model for the slender anole using the AUGUSTUS 
software (version 2.5.5). Six rounds of prediction optimization 
were done with AUGUSTUS. The same coding sequences were 
also used to train a separate ab initio model for the slender anole 
using SNAP (version 2006-07-28). Third, we used evidence prepar-
ation to generate gene structure based on transcriptome data 
(PRJNA961208), which we obtained from the liver, muscle, and 
brain tissue used in another study (Adam A. Rosso AA, Logan ML, 
Casement B, Chung AK, Curlis JD, Folfas E, Gallegos MA, Neel LK, 
Nicholson DJ, Williams CE, McMillan WO, Cox CL, personal comu-
nication). RNA-seq reads were mapped onto the genome using the 
STAR aligner software (version 2.7; Dobin et al. 2013) and intron 
hints generated with the bam2hints tools within the AUGUSTUS  
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software. MAKER, SNAP, and AUGUSTUS (with intron–exon bound-
ary hints provided from RNA-seq) were then used to predict genes in 
the repeat-masked reference genome. To help guide the prediction 
process, Swiss-Prot peptide sequences from the UniProt database 
were downloaded and used in conjunction with the protein se-
quences from A. carolinensis, L. agilis, and Z. vivipara to generate pep-
tide evidence in the MAKER pipeline. Only genes that were 
predicted by both SNAP and AUGUSTUS were retained in the final 
gene sets. To assess the quality of gene prediction, Annotation Edit 
Distance (AED) scores were generated for each of the predicted 
genes as part of the MAKER pipeline. Fourth, we curated the gen-
ome manually, during which we verified and corrected a prese-
lected list of genes. We preselected genes that are biologically 
relevant for our focal species and our current research, such as ar-
ginyl–tRNA synthetase (RARS), heat shock protein family (HSP40), 
heat shock protein family A (HSP70), and the heat shock protein 
90 (HSP90). Lastly, genes were further characterized for their puta-
tive function by performing a BLAST search of the peptide 
sequences against the UniProt database. tRNA were predicted 
using the software tRNAscan-SE (version 2.05). 

Repetitive element content and evolution 
We estimated the repeat element (RE) composition and repetitive 
landscape of the slender anole genome using the RepeatModeler 
(v.2.03; Flynn et al. 2020) and RepeatMasker (v.4.1.2; Nishimura 
2004) pipelines. We first constructed a reference repeat database 
for the slender anole by combining a de novo repeat library 
obtained from RepeatModeler and the Anolis repeat library from 
Repbase (release 20220927; Bao et al. 2015). We then annotated 
the repeats in our final assembly using RepeatMasker (v4.1.2). To 
estimate evolutionary divergence within repeat families, we gener-
ated a specific repeat family alignment and estimated the average 
Kimura-2-parameter divergence from consensus within each fam-
ily while correcting for high mutation rates at CpG sites using the 
perl tool (calcDivergenceFromAlign.pl) from the RepeatMasker 
package. We compared the slender anole’s RE composition and di-
vergence profile to the green anole (AnoCar2.0; Alföldi et al. 2011) 
and brown anole (AnoSag2.1; Geneva et al. 2022) assemblies using 
a parallel analysis with RepeatModeler and RepeatMasker. 

Results and discussion 
Genome assembly and comparison with other 
anoles 
We assembled and annotated a highly contiguous genome for the 
slender anole through multiple rounds of improvement based on 

Oxford Nanopore (ONT), 10× Linked-Read technologies (Illumina), 
and Hi-C data (Dovetail). Based solely on the 10× Illumina data 
and GenomeScope results, the slender anole genome size was 

Table 1. Descriptive statistics for the genome assemblies of the green anole (A. carolinensis; Alfoldi et al. 2011), the brown anole (A. sagrei;  
Geneva et al. 2022), the previous assembly of the slender anole (A. apletophallus Tollis et al. 2018), and the current assembly of the slender 
anole (this study).  

A. carolinensis A. sagrei A. apletophallus A. apletophallus  

Alfoldi et al. (2011) Geneva et al. (2022) Tollis et al. (2018) Current study  

Unplaced 
contigs Scaffold 

Unplaced 
contigs Scaffold 

Unplaced 
contigs Scaffold 

Unplaced 
contigs Scaffold  

L50 (number) 6,216 4 2,627 3 206,073 53,667 1,063 6 
N50 (bp) 79,867 150,641,573 208,531 253,587,442 2,534 9,520 634,366 154,613,287 
Longest (bp) 582,047 263,920,458 1,752,901 355,360,412 110,998 217,008 4,512,383 217,456,779 
Median (bp) 21,470 10,682 8,573 1,348 — — 17,299 9,783 
Scaffold_count 41,987 6,457 32,431 3,738 — — 17,399 9,445 
Results 13 scaffolds > 0.25 Mb 14 scaffolds > 20 Mb 103 scaffolds > 100 kb 23 scaffolds > 4 Mb 
Total size (Gb) 1.89 1.93 2.18 2.4  

Slender anole
current study

Slender anole
Tollis et al. 2018

Green anole
Alfoldi et al. 2011 

Brown anole
Geneva et al. 2021 

Log10 scaffold count (total 9.4k)

Scaffold length (total 2.4G)

Longest scaffold (220M)

N50 length (150M)

N90 length (45M)

(a)

(b)

Fig. 2. Genome assembly statistics for the slender anole and BUSCO 
completeness comparisons between anole genomes. a) Snail plot 
(produced using BlobTools v2.0) showing genome assembly summary 
statistics for our slender anole genome, including the scaffold N50 (dark 
orange), N90 (light orange), and base composition (percentage GC in dark 
blue, AT in light blue, and N in white). b) BUSCO results for the brown 
anole, green anole, and both the previous and current slender anole 
genome assemblies, including the portions of each genome that are 
composed of sequences that are complete and single copy (S), complete 
and duplicated (D), fragmented (F), or missing (M). These results are 
broken down in more detail in Supplementary Table 2.   
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estimated to be 1.7 Gb (smaller than our final genome assembly) 
with approximately 71.4% unique content and a heterozygosity le-
vel of 1.35% (Supplementary Fig. 1). Although our initial hybrid as-
sembly using Illumina 10× and ONT was fragmented, it produced 
a 2.4 Gb genome with a contig N50 of 428 kb, and the longest read 
was 4.5 Mb (see https://github.com/renatapirani/Genome-Anolis- 
apletophallus). The hybrid assembly also resulted in a total of 
∼13.5 million ONT reads, constituting ∼73 Gb of sequence data, 
with an average read length of 5,458 kb (Supplementary 
Table 1). 10× read technologies generated close to ∼720 million 
paired-end reads, which produced ∼115 Gb of sequence data 
with an average cleaned read length of 148.5 bp. The third ap-
proach, Hi-C technologies, produced ∼144 million reads and 
∼60.8 Gb of data, with an average read length of 300 bp 

(Supplementary Fig. 2). These data represent an approximate gen-
ome coverage of 30×, 44×, and 19×, respectively, based on our final 
genome assembly. The sequence data are summarized in detail in  
Supplementary Table 1. We used Hi-C data for genome scaffold-
ing to enhance our initial draft assembly with a mapping rate of 
99%. The scaffolding performed in HiRise using Hi-C proximity li-
gation libraries resulted in an improved assembly with the highest 
estimated gene representation. A comparison of the genome as-
sembly obtained here with the previously assembled slender an-
ole genome (Tollis et al. 2018) indicated that our genome had 
higher sequencing coverage, lower heterozygosity, and much 
higher contiguity and completeness (scaffold N50 of 154.6 kb in 
our final genome compared to 9.52 kb obtained; Tollis et al. 2018;  
Table 1). 

Fig. 3. Proportional and landscape comparisons of RE content between 3 high-quality anole genomes. a) The proportion of REs of various categories (LINE, 
long interspersed elements; DNA, DNA transposons; SINE, short interspersed elements; LTR, long terminal repeat; RC, repetitive components, structural 
RNA, satellite, simple repeat, and unknown portions of the genome) across the 3 anole genomes. b) RE landscapes between the green, brown, and slender 
anole genomes according to their Kimura 2-parameter divergence from consensus.   
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Our assessment of contamination in BlobTools indicated that 
72.4% (7,000 scaffolds, ∼2.4 Gb) of the scaffolds were classified 
as Eucaryota, whereas only 0.02% of the scaffolds mapped to bac-
teria (2 scaffolds). The remaining scaffolds (which represented a 
small total portion of the genome) had no blast hits (27.6%, 
2,500 scaffolds, 18 Mb; Supplementary Fig. 3). At the genus level, 
52.5% of reads mapped to anoles and 18.4% to other Chordata. 
The 2 microbial taxa present in the assembly were identified to 
genera Bacillus (0.01%) and Ruegeria (0.01%). Bacillus is ubiquitous 
in nature, and some can be pathogens in vertebrates. Ruegeria is 
aerobic and can be found on rhizosphere soil, so it is likely that 
this taxon was a contaminant present on the substrate on which 
our sample was collected. 

Our final genome assembly for the slender anole was ∼2.4 Gb in 
size with a GC content of 43.8% (Fig. 2a). The slender anole genome 
is thus substantially larger than both the green anole (1.89 Gb;  
Alföldi et al. 2011) and brown anole (1.93 Gb; Geneva et al. 2022) 
genomes (Table 1). BUSCO (Manni et al. 2021) analysis using the 
Tetrapoda gene set recovered 90.5% of expected complete ortho-
logs within our assembly, while in the previous slender anole gen-
ome, only 28% of the expected complete orthologs were recovered 
(Fig. 2b). Compared with the other high-quality (chromosome- 
level) anole genomes available on GenBank (A. carolinensis and 
A. sagrei), our assembly had the second highest scaffold N50, 
L50, and complete BUSCO scores (after the brown anole genome;  
Geneva et al. 2022), as well as the third fewest number of scaffolds 
(after the brown and green anole genomes; Fig. 2; Supplementary 
Table 2). Merqury estimated that assembly completeness was 
92.5%, and the consensus QV score was 31 (>99.9% accuracy;  
Supplementary Fig. 4). 

Dot plots comparing the slender, green, and brown anole as-
semblies show a high level of similarity between the 3 genomes 
(Supplementary Fig. 5). The first 10 scaffolds in the slender anole 
genome are likely the first 6 chromosomes present in the green 
anole genome (Alföldi et al. 2011; Eckalbar et al. 2013;  
Supplementary Fig. 5a). We observed a higher level of synteny be-
tween the slender and brown anoles, which we expected as both 
are part of the Norops species group (Supplementary Fig. 5b). 
Nevertheless, the macrochromosomes (5 largest) for the brown 
anole correspond to 10 chromosomes in the slender anole 
(Supplementary Fig. 5b). These results suggests that, despite gen-
erally high colinearity between the brown and slender anole gen-
omes, there have been chromosome rearrangements that have 
taken place during the evolution of the Norops lineage. 

Genome annotation 
Our annotation using the Dovetail pipeline identified a total of 
46,763,836 bp coding regions and a total of 33,912 gene models. 
Protein-coding genes were 1,390 bp in length on average, with a 
total number of single-exon genes of 2,998. The number of gene 
models identified for the slender anole was higher than that of 
both the green anole (22,292) and brown anole (20,033). Dovetail 
functional annotation assigned putative functional predictions 
to 71% (24,182 genes) of the predicted protein-coding genes, leav-
ing a total of 9,730 genes of unknown function. 

Repetitive element content and evolution 
We observed some clear differences in the composition of REs 
among anole species. In general, we estimated a total of 60% of 
the slender anole genome as REs, compared with 46.5% for the 
green anole and 51.8% for the brown anole (Fig. 3a). The slender 
anole genome had a greater proportion of long interspersed 
elements (LINEs; 24.5%) and long terminal repeat (LTR) 

retrotransposon elements (5.2%) compared with the green (16.8 
and 3.3%, respectively) and brown anole (22.8 and 2.1%, respect-
ively). In contrast, DNA transposon content was higher in the 
brown anole (DNA; 11.3%) compared with the slender and green 
anole (7.3 and 3.3%, respectively). A larger abundance of unknown 
REs were also recovered for the slender (20.3%) and green anole 
(20.3%), but a smaller fraction was detected in the brown anole 
(8.9%, Fig. 3a). Other RE classes and their proportions are included 
in Fig. 3a. There were also clear differences in RE content and evo-
lution among the different anole lineages (Fig. 3b). Although a 
more accurate and complete RE annotation is required to make in-
ferences about the evolution of REs in anoles, our current annota-
tion and divergence analysis is useful to detect global patterns of 
RE activity between anole linages (Platt et al. 2016). The distribu-
tions of RE divergence in the slender anole reflect high divergence 
of all RE types with multiple peaks, which suggest evolution of REs 
has occurred both recently and more distantly in the past (mul-
tiple peaks between ∼2 and 20% divergence for all RE types;  
Fig. 3b). This contrasts with the pattern observed in the green 
and brown anoles, where only 1 peak was observed between ∼2 
and ∼10% of divergence for all RE types, suggesting a more recent 
expansion of REs within those species (see also Feiner 2019). These 
differences between RE accumulation among anole species may 
be associated with differences in adaptation to alternative habi-
tats (Kanamori et al. 2022) or demographic histories (Tollis et al. 
2018). 

Conclusion 
The genome of the slender anole described in this paper is one of 
the most complete and well-annotated genomes of any lizard spe-
cies to date. This new genome provides a foundation for future 
studies on the genetic underpinnings of slender anole morph-
ology, physiology, and behaviour and opens the door to develop 
this species as a model system for linking ecological-based selec-
tion to molecular evolution. The slender anole genome also in-
creases the genetic resources available to study the evolution of 
mainland anoles and to improve our understanding of the adap-
tive radiation of this genus across the Neotropics. 

Data availability 
The genome assembly and all the sequencing data have been de-
posited in the GenBank database under the accession number 
PRJNA906575. All supporting data and materials are available in 
the Smithsonian Tropical Research Institute repository (https:// 
smithsonian.figshare.com/articles/dataset/Anolis_aplentophallus_ 
genome_assembly_and_annotation/24352711). The codes for 
the analyses performed here can be found online at the GitHub 
repository (https://github.com/renatapirani/Genome-Anolis- 
apletophallus). 

Supplemental material available at G3 online. 
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